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Abstract: The modulation instability (MI) in optical fiber amplifiers and lasers 

with anomalous dispersion leads to CW beam breakup and the growth of multiple 

pulses. This can be both a detrimental effect, limiting the performance of amplifiers, 

and also an underlying physical mechanism in the operation of MI-based devices. Here 

we revisit the analytical theory of MI in fiber optical amplifiers. The results of the exact 

theory are compared with the previously used adiabatic approximation model, and the 

range of applicability of the latter is determined. The same technique is applicable to 

the study of spatial MI in solid state laser amplifiers and MI in non-uniform media. 
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Modulation instability (MI) is a fundamental nonlinear effect [1-3] that manifest 

itself in optics, for example, as the spontaneous breakup of a continuous wave (CW) 

beam with sufficiently high power. In optical fibers, MI occurs as a result of the 

interplay between the effects of the anomalous group-velocity dispersion (GVD) and 

self-phase modulation. The spatial modulation instability of stationary CW propagated 



in nonlinear material produces wave transversal modulations and filamentation. 

Usually, MI is a detrimental effect that degrades the beam quality. However, MI can 

also be exploited in a constructive way, for instance, as a technique to generate an 

optical pulse train or as a passive mode-locking mechanism in fiber lasers [4-10]. In 

this context, MI is a passive nonlinear effect that has economic advantage over schemes 

using ultrafast modulators.  An important feature of this technique is that the generation 

of continuous streams of short-pulses via MI can be realized at high repetition rates. As 

a nonlinear fiber effect sensitive to dispersion, MI is also very attractive for various 

measurement techniques [11, 12]. Recent progress in micro-structured optical fibers 

offers new opportunities for the control of dispersive properties and, thus, to new 

potential applications of MI across a broad spectral range. 

The growth rate of the instability and of the most unstable scale (temporal 

or spatial) are determined by the field amplitude. Here we consider MI in amplifiers, 

where the intensity continuously increases, changing the instability growth and 

modulation scale. The usual way to study this problem is to assume that, locally, we 

have MI of a constant field amplitude which adiabatically changes with propagation 

(adiabatic approximation [3, 15]), but the accuracy of this approximation is not clear. 

Fortunately, the problem can be solved analytically [13, 15, 16, 17]. Below we consider 

the exact solution and compare it with the results of adiabatic approximation. 

Over a wide range of physical parameters, the propagation of the optical field 

down a fiber amplifier at leading order is described by the nonlinear Schrödinger 

equation (NLSE) with gain terms:  



  (1) 

Here  is the group velocity dispersion. The nonlinear parameter is 

where  is the operational wavelength, is the nonlinear 

refractive index, and is the effective area of the fiber. Finally, is the small signal 

gain of the amplifier. The parameter  characterizes the gain bandwidth of an 

amplifier (or the effect of external filtering). We consider here an optical field 

propagating from z = 0 to z = L. Consider the modulation instability of the CW field:  

, 

where . A perturbation to the power evolution can then be found 

as:  

            (2) 

Assuming and expressing the fields through the corresponding 

Fourier modes  (for notational simplicity, we henceforth omit the 

index ) yields the standard linear evolution equations (4) for the spectral modes of 

perturbations with initial conditions appropriate to the Cauchy problem. 

Assuming ,  we obtain the standard MI relation [1]:       

          (3) 



with kz increasing for small values of , reaching its maximum at , 

and approaching zero at . In amplifiers, however, where the field 

power grows as , the most unstable perturbation frequency increases 

during propagation due to the power exponential growth. To estimate the growth due to 

MI in an amplifying medium, one can use the expression for the uniform MI, but 

replace constant power with a growing power, . This corresponds to the so-

called adiabatic approximation (see e.g. [3, 15]).  

Equation (2) can be solved analytically. Introducing 

 
 

the equations for a(z) and b(z) take the form:  

               (4) 

The solution to (4) can be obtained in terms of the Bessel functions and  

(compare to approaches used in [16] in context of short-scale self-focusing and in [17] 

for analysis of modulation instability in lossy fibers): 

            (5) 

Here 



   

The solutions (5) are functions of the real and imaginary parts of the initial 

perturbations and three dimensionless parameters:  The dependence of the 

solution on nonzero bandwidth s is trivial, and later we mostly consider s = 0. 

The nonlinear Schrödinger equation (NLSE) governs the propagation of a high-

power beam through an amplifier medium according to 

    (6) 

Here is the propagation vector in vacuum; and are the linear and nonlinear 

refractive indices, respectively; and is the amplifier gain. Similar to (1), this has a 

uniformly growing solution. Consider the following perturbation of this solution: 

  

with .  For the perturbations a and b we have Eq. (4) with s = 0 and 

. 

Similar equations can be derived for the evaluation of the instability of an 

intense wave propagating in a non-uniform atmosphere with  [14]. For 

perturbations  we obtain (4) with g0 = 1/h. 



The initially stable perturbations propagating in an amplifier can eventually 

become unstable, growing ones. The Stürmian theory [18] guarantees for the Sturm–

Liouville problem (4) that the solutions (5) are growing with z under the condition 

 For  and  the leading term in the expansion of the exact 

solution reads: 

                          (7) 

 

 

 

In this limit, it is seen that is decaying and  is growing, and the solutions (5) we 

used in the unstable case are similar to the growing and decaying exponents without 

amplifications. The growth of perturbations in the amplifier is super-exponential 

. In the opposite limit ,
 
both  and  are oscillating. 

In most of the MI studies, it was assumed that the perturbations grow from the 

thermal level, and that to become noticeable the initial perturbations must grow by a 

few orders of magnitude. This means that in (5) only the terms with the growing 

function  must be taken into account. The power growth of the initial perturbations 

can be characterized by an increment factor (similar to the homogeneous case, making 



comparison more convenient) defined as: 

  

Here we assume  For large , Γ is practically independent of 

boundary conditions. 

 In the adiabatic approximation (AA), we have  where kz is given 

by (3) with P0 replaced by the local intensity . After integration we have 

,  

with  defined as: 

 (8) 

  

The second formula means that the growth starts not at the entrance of the amplifier but 

later, at z=z*. This is a most practical case, and later we will focus our attention on it. 

Formally, AA is applicable when Γ >> 1. It means that the expression for the growth 

rate Γ is accurate only at z >> z*, and by keeping the constants in (8) one is exceeding 

the accuracy of the approximation. 



Comparing (8) with (7), we see that the asymptotic form of the exact solution 

coincides closely to the adiabatic approximation [3,15], but that there are two important 

differences. First is the presence of the pre-exponential factor, which can be included as 

a next expansion term in AA. Also the term -µπ/2 in the exponent of the asymptotic (7) 

is absent in (8). This means that the asymptotic growth, as calculated via (8), will be 

smaller then exact value by the factor . This is a small effect for small µ but can be 

important factor for large µ values. The accuracy of the approximation at finite z is not 

clear. To clarify it we plot on Fig.1 the asymptotic value of (x) given by (7) (green 

line) and the result of exact calculations for few values of µ (red line). Also we included 

the standard AA expression [3, 15] (black line) and an improved AA including the pre-

exponential factor (blue line). 

 We note the fast convergence of the exact solution and the asymptotic one (7). 

However, the AA results are noticeably different from the exact solution. We can see 

that for small µ, AA overestimates the exact solution, and for large µ, AA 

overestimates it.  

 These general features are manifested in calculations of integrated growth. It is 

convenient to plot the integrated growth as a function of p. Without amplification the 

maximum growth rate takes place at p2 = 1/2 and for adiabatically growing intensity P 

the point of maximal growth rate increases as P/2P0. 

In Fig. 2 we plot a comparison of the exact solution with AA results given by 

(8). We use parameters from the paper [3] and plot the integrated growth for a few 



amplifier lengths. The vertical dotted lines indicate the maximum growth rate for the 

intensity at the amplifier exit. 

We see that the adiabatic approximation can be inaccurate in many real 

situations. 

Small p corresponds, for fixed gain, to the small values of µ, and according to 

Fig.1 AA overestimates the growth. For large p and correspondingly large µ, AA 

underestimates the growth. Improvement of AA by inclusion of the pre-exponential 

factor does not help much. 

In general, the increment factor  is a multi-parametric function of 

the parameters  and L. Therefore, the existence of the analytical solution 

provides the useful tool for design analysis, and the use of simple AA can produce 

noticeable errors. For fixed values of other parameters we have to determine the 

maximum value of the increment growth as a function of . The s dependence is 

trivial and later we put s = 0. It is convenient to use p as a parameter. In a uniform 

media (g0L = 0), the most unstable mode corresponds to p2=1/2 and cutoff at p2 = 1.  In 

contrast, in the amplifier, the most unstable value of  increases during propagation, 

and the value of corresponding to the most unstable mode increases. We see that 

maximal unstable frequency (transversal perturbation wave-number) increases with 

amplifier length but remains smaller than the values corresponds to the final power. For 

a sufficiently long amplifier, the most unstable modes were stable initially. The effect 

of this sliding of the most unstable frequency with the development of MI in the optical 

fiber amplifier has a direct impact on the operation of MI-based fiber laser and the 



generation of pulse trains using MI. For instance, in fiber lasers where MI triggers 

passive mode-locking, the instability frequency should be in resonance with the 

resonator frequency and this sliding of the maximum of instability should be taken into 

account. 

Frequently, MI growth is initiated by finite perturbations. In fiber amplifiers 

these are the deviations of the pulse shape from a flat top. For spatial instability in 

amplifiers, these can be material defects or misalignments.  

 When perturbations must grow only a few times to be noticeable, the initial 

conditions become important. Initial conditions also become important near the cutoff 

instability as the growth is not large near such points. From (3) one can see that in the 

linear stage of instability the intensity variations are proportional to the real part of the 

perturbation a, and are determined by the coefficient A in (5). The value of A is related 

to the amplitude, phase and scale of the perturbations in a nontrivial way. The contours 

of A are presented in Fig.3, where the relative impact of the initial phase  and 

amplitude a(0) perturbations on the growing solution are shown. Here 

and   

 We see that the values of A for different phases can vary by a factor of 10. This 

result can be used for the optimization of soliton laser design, in that optimization of the 

initial perturbation can reduce the laser size. For the spatial instability we can find the 

most dangerous type of optical defects producing the beam perturbations. 

The above results indicate the usefulness of the exact solution (5). In a situation 

when the most unstable mode does not grow at the amplifier entrance, (5) must be used 



to calculate the values of a and b at the moment the growth started, which can be 

different from the initial conditions. 

  In addition, a real system frequently has several elements and amplifiers. 

Using the analytical result (5) we can find the values of a and b after an amplifier and 

propagate the perturbations through the next optical element. Thus we are now able to 

provide complete modeling of MI through all complex optical systems. The modeling 

of nonlinear propagation in a powerful laser can now be upgraded to the level of 

modeling of nonlinear effects in passive optical systems. 

We have revisited the theory of modulation instability in fiber amplifiers. We 

have found the complete analytical solution of the linear growth. This allows us to find 

the most unstable mode and to calculate the power growth exactly, without restricting 

considerations to the asymptotically growing mode as in most previous works.  We 

have demonstrated that for practical situations the growth of the perturbation is 

sensitive to the initial perturbation and to its phases. In many applications, the initial 

perturbation fields are different from a plane wave and are amplified from some 

distribution other than noise. Our results indicate how to modulate the signal in order to 

accelerate the breakup into shorter pulses, and thus to optimize the design of the soliton 

laser. While our results are directly relevant to the modulation instability in optical fiber 

amplifiers and lasers, the underlying theory is quite general and has a variety of 

physical applications beyond fiber optics. 
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Fig.1 Red lines, Re (x), asymptotic value of (x) given by (7); green, AA 

results; black, improved AA; blue for few values of µ  

for x> µ, µ=0.1, µ=1, and µ=3, respectively. 
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Fig.2 Integrated gain versus for few 

amplifiers length L. Solid lines – exact 

solution; dashed – AA;  red line – L=80 m; 

green – 90 m; blue – 100 m.β2=-20ps2/km , 

γ=10 1/Wkm.,P0=100mW ,g0=0.3 dB/m 

 

Fig. 3 Contour plot of the coefficient 
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the growing solution in the plane  with 

 

 

 

References 

(1) V. E. Zakharov and L. A. Ostrovsky, “Modulation instability: the beginning,” Physica D 238, 

540–548 (2009). 

(2) V. I.Bespalov and V.I.Talanov, “Filamentary Structure of Light Beams in Nonlinear Media,” 

JETP Lett., 3, 307–310 (1966). 



 14 

(3) G. P. Agrawal, “Modulation instability in erbium-doped fibre amplifiers,” IEEE PTL, 4(6), 

562–564 (1992). 

(4) K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, “Generation of subpicosecond solitonlike 

optical pulses at 0.3 THz repetition rate by induced modulational instability,” Appl. Phys. 

Lett. 49, 236–238 (1986). 

(5) P. V. Mamyshev, S. V. Chernikov, E. M. Dianov, and A. M. Prokhorov, “Generation of a 

high-repetition-rate train of practically noninteracting solitons by using the induced 

modulational instability and Raman self-scattering effects,” Opt. Lett. 15, 1365–1367 (1990). 

(6) S. V. Chernikov, D.J. Richardson, R.I. Laming, E.M. Dianov and D.N. Payne, “70 Gbit/s 

fiber based source of fundamental solitons at 1550nm,” Electron. Lett. 28, 1210–1212 

(1992). 

(7) M. Nakazawa, K. Suzuki, H. A. Haus, “The modulational instability laser—Part I: 

Experiment,” IEEE J. Quantum Electron. 25, 2036–2044 (1989). 

(8) P. Franco, F. Fontana, I. Cristiani, M. Midrio and M. Romagnoli, “Self-induced 

modulational-instability laser,” Opt. Lett 20, 2009–2011 (1995). 

(9)  C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced 

modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-

GHz soliton train,” Opt. Lett. 27, 915–917 (2002). 

(10) Y. Gong, P. Shum, D. Tang, C. Lu, and X. Guo, “660GHz Solitons Source Based on 

Modulation Instability in Short Cavity,” Opt. Express 11, 2480–2485 (2003). 



 15 

(11) M. Artiglia, E. Ciaramella, and B. Sordo, “Using modulation instability to determine Kerr 

coefficient in optical fibres,” Electron. Lett., 31(12), p.1012–1013 (1995). 

(12) J. Fatome, S. Pitois, G. Millot, “Measurement of Nonlinear and Chromatic Dispersion 

Parameters of Optical Fibers using Modulation Instability,” Optical Fiber Technology, 12(3), 

243–250. July (2006). 

(13) A. M. Rubenchik, S. K. Turitsyn, and M. P. Fedoruk, “Modulation instability in high power 

laser amplifiers,” Opt. Express 18, 1380–1388 (2010). 

(14) A. M. Rubenchik, M. P. Fedoruk and S. K. Turitsyn, “Laser beam self-focusing in the 

atmosphere”, Phys. Rev.Lett., 102 233902 (2009) 

 

(15) B. R. Suydam, “Self-focusing of very powerful laser beam “ in Laser Induced Damage in 

Optical Materials,A.J.Glass and A.H.Guenther,Ed.Washington, D,C, NBS,1973,special 

publication 387,“Self-focusing of very powerful laser beam. II”, IEEE J. Quant. Electron., QE-

10 837 (1974) 

 

 (16) N. N. Rozanov and V. A. Smirnov, “Short-scale self-focusing of laser radiation in 

amplifying systems”, Sov. J. Quantum Electron., 10(2), 232–237 (1980). 

(17) M. Karlsson “Modulational  instability in lossy optical fibres”, J. Opt. Soc. Am B, 12, 2071 

(1995). 

(18) E. L. Ince, Ordinary Differential Equations (Dover, 1956). 


